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Abstract

In this paper we address the general question of how social influence determines collec-

tive outcomes for large populations of individuals faced with binary decisions. First, we

define conditions under which the behavior of individuals making binary decisions can be

described in terms of what we call an influence-response function: a one-dimensional func-

tion of the (weighted) number of individuals choosing each of the alternatives. And second,

we demonstrate that, under the assumptions of global and anonymous interactions, general

knowledge of the influence-response functions is sufficient to compute equilibrium (and even

non-equilibrium) properties of the collective dynamics. In general, we find that collectives

making very different kinds of decisions can exhibit surprisingly similar behavior; and con-

versely, that very similar types of decisions can yield collective behavior that is dramatically

different.

Keywords: social influence, influence-response function, collective outcomes, best-response

dynamics.
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1 Introduction

The role of social influence in individual and collective decision making is a pervasive but

still poorly understood feature of the social world. Although individuals often perceive

themselves to be acting independently, regarding their subsequent actions and choices as ac-

curate reflections of stable, intrinsic preferences, sociologists, psychologists, and economists,

have come to accept that many decisions made by individuals depend critically on their

observations, or anticipations, of similar decisions made by others. In this paper, we refer

to the resulting interdependence between individual decision makers as “social influence.”

We emphasize, however, that social influence is not a singular phenomenon, but rather

exhibits multiple social, psychological, and economic origins (Cialdini 2001). Individuals,

for example, may be susceptible to social influence out of a desire to identify with certain

social groups (Festinger, Schachter and Back, 1950) or to differentiate oneself from them

(Simmel, 1957), in order to avoid sanctions over non-conformity (Asch, 1953); as a socially

conditioned response to authority (Milgram, 1969), as a means of reducing the complexity

of the decision making process (Gigerenzer, Todd and Group, 1999), as a way of inferring

otherwise inaccessible information about the world (Bikhchandani, Hirshleifer and Welch,

1998; Goldstein and Gigerenzer, 2002), in order to gain access to a particular network (Katz

and Shapiro, 1985), or to reap the benefits of coordinated action (Oliver, 1980; Oliver and

Marwell, 1985).

Consistent with its multifaceted origins, social influence also manifests itself in a wide range

of social phenomena, including local variability in crime rates (Edward L. Glaeser et al., 1996

and Dan M. Kahan, 1997) and economic conventions (H. Peyton Young and Mary A Burke,

2001), diffusion of innovations (Thomas W. Valente, 1995), “bystander inactivity” (Christina

Bicchieri and Yoshitaka Fukui, 1999 and Robert B. Cialdini, 2001), residential segregation

(Thomas C. Schelling, 1971), herd behavior in financial markets (Robert J. Shiller, 2000),

the success and failure of social movements (Hyojoung Kim and Peter S. Bearman, 1997),

political uprisings (Timur Kuran, 1991 and Susanne Lohmann, 1994), contributions to public

goods (Elinor Ostrom et al., 1999), and other forms of collective action (David Strang and

Sarah A. Soule, 1998). Furthermore, while many discussions of social influence tend to be

concerned with non-market behavior (e.g. social movements, conformity to reference groups,

and fashion), social influence can play an important role in markets as well. For example,

a related body of work that has attracted the attention of economists deals with a class

of technology markets that exhibit what have been called “network externalities” (Michael

L. Katz and Carl Shapiro, 1985) or somewhat more generally “network effects” (Stanley J.

Liebowitz and Stephen E. Margolis, 1998, 1994). Both terms are meant to imply that the

utility to an individual of a particular product (e.g. a fax machine) or skill (e.g. a language)
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is positively related the size of the relevant “network” associated with the product/skill;

thus it is effectively a function of the previous decisions of others.

The pervasive and multifarious nature of social influence makes it a topic of great relevance

to much of social science; however, it also renders the concept somewhat difficult to de-

scribe precisely. In order to gain some analytical traction on a potentially diffuse problem,

we therefore restrict our discussion of social influence to the class of binary decisions (i.e.

choices between precisely two discrete alternatives) that exhibit what we will call “decision

externalities”, by which we mean simply that the likelihood of each individual choosing one

alternative over another is a function of the number of others choosing each alternative.1

At the cost of some precision, previous models of binary decisions with externalities can

be divided into three broad categories to which we refer as heuristic models, mechanistic

models, and social utility models respectively.2

Heuristic models, which dominate the diffusion of innovations and collective action litera-

ture (Roy M. Anderson and Robert M. May, 1991; Edward L. Glaeser et al., 1996; M. S.

Granovetter, 1978, and Duncan J. Watts, 2002), begin from the presumption that individual

actors “adopt” some practice (which can be variously an item, a procedure, or an idea) as

a consequence of being exposed to it by other actors (who can be individuals or organiza-

tions). Although these models can differ considerably in their specific assumptions about

how exposure leads to adoption, all of them either explicitly or implicitly assume the logic

of contagion; that is, that “susceptible” individuals can be “infected” purely by exposure to

existing “infectives”. Heuristic models have the great advantage that once the infection rule

is specified, the exercise of computing the equilibrium, or even non-equilibrium, behavior of

the collective dynamics is relatively straightforward3 (P. S. Dodds and D. J. Watts, 2005,

2004; M. S. Granovetter, 1978; M. S. Granovetter and R. Soong, 1986; Mark. S. Granovetter

and R. Soong, 1983; D. López-Pintado 2004, 2005, and D. J. Watts, 2002). Unfortunately,

heuristic models are usually proposed in the absence of any precise psychological or eco-

nomic rationalization; thus many specific choices of heuristics may seem equally plausible,

or implausible. These ambiguities, furthermore, turn out to be important (P. S. Dodds

1Our use of the term "externality" is therefore roughly analogous to its standard usage, where it refers

to an external effect generated by an individual’s action (e.g. downstream pollutions), but is specific to the

context of social influence. By contrast our use of the term is somewhat more general than Schelling (1973)

who consideres only one particular class of what we will call "explicit" externalities.
2Young (2005) also distinguishes between different types of social influence models, namely, contagion

models and learning models. He studies how the overall shape of the adoption curve depends on the particular

mechanism that describes why individuals adopt, whereas we are more interested in simply describing the

long-run behavior of the dynamics.
3 In this sense, heuristic models of social influence are related to a vast literature in mathematical epi-

demiology, which is concerned with onset, size, duration, and control of epidemics of infectious disease (Roy

M. Anderson and Robert M. May, 1991; N.M. Ferguson et al., 2003, among others).
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and D. J. Watts, 2004 and D. López- Pintado, 2005); thus which model is appropriate to

what specific applications would seem to be an important question, but not one that can be

resolved without careful attention to the micro-mechanical details.

By contrast with heuristic models, mechanistic models have the virtue that the externalities

in question arise directly from assumptions about the psychological or economic details of

the decision making process itself; hence are grounded theoretically in the application used to

motivate them. Parameters are therefore interpretable and policy implications are, at least in

principle, clear. For example, Bikhchandani et al. (1998, 1992) propose a sequential decision

making model in which individuals update their own private signals regarding a choice

between two alternatives by observing the choices (but not the private signals) of previous

decision makers. The result is that under certain conditions, individuals will ignore their

own private signals and follow the majority, triggering what Bikhchandani et al. (1992) label

an "information cascade".4 An alternative strand of mechanistic models, following Schelling

(1973), focuses on the decision externalities inherent to particular classes of N-player games.

A number of authors have subsequently investigated the relationship between individual

best responses and the dynamics of collective decisions in the context of social dilemmas (N.

S. Glance and B. A. Huberman, 1993, Geoffrey Heal and Howard Kunreuther, 2003, Pamela

E. Oliver, 1980, 2001), anti-coordination games (Bramoullé, 2001), and coordination games

(G. Ellison, 1993; M. Kandori et al., 1993; S. Morris, 2000 and P. Young, 1993, 1998).

Finally, Milgrom and Roberts (1990) analyze the properties of the Nash equilibrium in

very general games. In particular, they study games with strategic complementarity, which

broadly corresponds with the positive externality games in our setting.5

The downside of mechanistic models is that they are difficult to generalize to examples

other than those from which their micro-mechanical description is derived. For example,

while it is clear that in each of the above examples, individual decisions are subject to

externalities, it is unclear how the information cascades discussed by Bikhchandani et al.

(1992) are relevant to problems involving public goods. Presumably some kind of cascadelike

dynamics are possible under some conditions (Geoffrey Heal and Howard Kunreuther, 2003),

regardless of whether the externality in question derives from the assumption that others

have information that one lacks, or from the decisions makers utility being contingent on

the contributions of others. But short of a unifying framework under which both kinds of

externalities can be subsumed, it is impossible to say what those conditions might be, or

4Banerjee (1992) has independently proposed a similar model, with similar results, and Arthur and

Lane (1993) have extended the approach to decisions in which risk-averse agents observe private signals of

predecessors as well as their actions.
5We extend Milgrom and Roberts (1990) since apart from strategic complentarity games we also consider

sbustitute gams and combinations of both types of games. In other aspects, however, Milgrom and Roberts

(1990) is more general because it allows for a larger strategy space.
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how lessons learned in one context might be applied in another.

One possible compromise between the generality of heuristic models and the economic ra-

tionality of mechanistic models is the class of “social utility” models, first introduced by

Leibenstein (1950), and later applied specifically to the case of binary decisions by Brock

and Durlauf (2001) and others.6 Brock and Durlauf (2001) identify two specific functional

forms that social utility might hypothetically take: “proportional spillovers”, according to

which social utility increases linearly with the expected number of others; and “pure con-

formity”, according to which social utility diminishes quadratically away from the mean

response. They then derive expressions governing the equilibrium states of the collective

decision dynamics, corresponding to the proportional spillovers and pure conformity utility

functions respectively. Other work in the same tradition also introduces one of these two

functional forms for social utility in their respective utility functions with analogous con-

sequences. Young and Burke (2001), for example, introduce a proportional spillover term,

and Bernheim (1994), Bicchieri and Fukui (1999), and Blume and Durlauf (2003) all invoke

terms that correspond to pure conformity.

Although less arbitrary than heuristic models and more general than mechanistic models,

social utility models are in some ways an awkward compromise. It remains ultimately

unclear, for example, on what basis individuals should derive utility from the choices or

attitudes of others; thus one cannot say with confidence why one particular functional form

for the “social” part of the utility function should be preferred over another, and which

functions are appropriate to which applications. Furthermore, unlike heuristic models which

at least in principle, could be estimated empirically, it is unclear how one would go about

measuring social utility. And finally, social utility models, although formulated intuitively,

still present considerable analytical difficulties with respect to computation of collective

dynamics, especially for heterogeneous populations.

Acknowledging the difficulty that social utility models have attempted to overcome–that

is, combining the economic rationality of mechanistic models with the generality of heuristic

models–this paper adopts an approach to the problem that omits the explicit formulation

of social utility altogether. We achieve this goal in two, analytically distinct stages. First,

we define conditions under which the myopic-best response of individuals making binary

decisions in the presence of social influence can be described in terms of what we call an

influence-response function: a one-dimensional (i.e. scalar) function of the (weighted) num-

ber of others choosing each of the alternatives. As we will discuss below, our formulation

of influence-response functions, although restricted in some important ways, encompasses a

6Brock and Durlauf’s formulation of social utility corresponds roughly to one part of what Leibenstein

calls non-functional utility, a category under which Leibenstein also includes "speculative utility" and "ir-

rational utility". Here we follow Brock and Durlauf ’s specification.
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wide range of interesting applications. And second, we demonstrate that, under some addi-

tional conditions, reasonably general knowledge of individual influence-response functions is

sufficient to compute the equilibrium, and even non-equilibrium, properties of the collective

dynamics. Importantly, our method for computing collective dynamics–which is standard

in the field of nonlinear dynamics, but which appears to be little known in economics7–is

reasonably simple to perform in practice, and generalizes easily to allow for heterogeneous

populations, synchronous and asynchronous updating, and stochastic as well as deterministic

best-responses.

Our analytically distinct treatment of individual and collective behavior is central to our

approach, and has a number of advantages. First, it permits us to treat in a unified way

a number of applications, which at face value seem quite different. For example, we can

compute the equilibrium behavior of a large population engaged in certain kinds of public

goods games in the same way that we would for certain kinds of social learning problems,

possibly even with the same equilibria, even though the two “games” arise from very dif-

ferent micro-origins. Second, and conversely, our approach also permits us to differentiate

between applications, such as public goods games with slightly different shaped production

functions, which are superficially very similar but which result in qualitatively distinct col-

lective behavior. Finally, as we discuss briefly in Section 3, in cases where it is not possible

to derive the relevant influence-response functions from first principles, one may nevertheless

be able to measure them directly, perhaps through experiments. Because, in such cases, it

would still be possible to compute collective equilibria, the separation of individual from

collective behavior may have empirical advantages as well.

The remainder of this paper is organized as follows. In Section 2, we outline our analyt-

ical framework for characterizing binary decision externalities, and then derive the type

of influence-response functions for a number of specific cases. In Section 3, we introduce

some additional assumptions regarding how individuals in a population of decision mak-

ers interact with each other, and then show how under these conditions, our framework of

influence-response functions leads to particularly simple methods for computing collective

equilibria, outlining solutions both for discrete (synchronized) and continuous (asynchro-

nized) updating of decisions. In Section 4, we outline some extensions to the basic model,

including stochastic best responses; and in Section 5, we conclude.

2 Binary decisions and externalities

Our first goal is to outline a framework for relating the externalities that pertain to various

decision making scenarios to individual-level decision rules that is both general, in the sense
7Schelling 1973 introduces the same idea, but does not develop it in detail.

7



that it encompasses all the particular examples discussed above, yet precise in the sense

that the parameters which appear in the decision making rule can be interpreted in terms of

the motivating application, and hence are amenable to measurement. In order to proceed,

however, we require some analytical distinctions, both with respect to the origins of decision

externalities, and also their form.

With regard to origins, we distinguish between what we call implicit and explicit decision

externalities. Explicit externalities arise whenever the utility ascribed to one alternative

over another is a direct function of the (absolute or relative) number of others choosing that

alternative. Implicit externalities, however, arise indirectly as a result of inferences that

individuals make about information regarding the decision that is held by others, and that

they obtain through some sampling procedure. Both explicit and implicit externalities can

arise in a variety of circumstances, and within each broad class there exist additional sub-

classes; however, all obey this basic distinction. Implicit and explicit externalities, notably

cannot be derived from any common framework: although they may or may not have the

same effective implications for decision making, they are simply of different origins.

With respect to form, we identify three kinds of externalities–strictly positive, strictly neg-

ative, and non-monotonic–where the first two kinds correspond loosely to Leibenstein’s

(1950) characterization of “bandwagon” and “snob” effects, and the third can be regarded

as a mixture of the other two (M. S. Granovetter and R. Soong, 1986). In our scheme,

positive externalities pertain whenever the probability of choosing a particular alternative

increases with respect to the number of others choosing it, and negative externalities imply

the opposite. In our usage, the presence of non-monotonic externalities implies that exter-

nalities are positive when the number of adopters is low, but that they become negative

as the number of adopters increases (where clearly other combinations are possible). For

example, in fashion, one may not wish to adopt a new style until it has been adopted by

sufficiently many others (a positive externality), but one may also lose interest in the same

style once it has been adopted by too many others (a negative externality).8

Depending on the details of the decision, all three kinds of externalities may arise either

from explicit or from implicit origins, where the same form of externality may arise in very

different scenarios, and by contrast different forms may arise from scenarios that superfi-

8The definitions of positive, negative and non-monotonic externalities introduced here, do not coincide

with the common usage of these terms in Economics. In this paper the form of the externality depends on

how the behavior of others affect ones probability of choosing an action Elsewhere, however, the distinction

between positive, negative and non-monotonic externalities generally depends on whether the utility in-

creases, decreases or is non-monotonic with respect to the behavior of others. To clarify this point, consider

for instance a public goods game. If we rely on the standard definitions public goods always exhibit positive

externalities. However, when the production function is concave, ones probability of contributing decreases

as the number of contributors increase, which would imply negative externalities, using our nomenclature.
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cially may appear hard to distinguish (for example, between two public goods with different

shaped production functions). Furthermore, as we will show in Section 3, the distinction

between monotonic and non-monotonic externalities is consequential, as the collective dy-

namics corresponding to each case will generally display qualitatively distinct properties.

Before proceeding to derive influence-response functions for binary decisions, we require

one additional restriction on our model–that social influence satisfies what we call the

assumption of “independent effects”. By this assumption, we mean that the influence an

individual experiences as result of another individual ’s action is independent of the influence

experienced from any other individual. To put it differently, independent effects assumes

that one considers the action of other individuals as decisions taken simultaneously, and

therefore independently of each other.9 Although this assumption is quite general–it does

not require, for example, that all influences be felt equally, or that the resulting influence-

response function be linear–it does exclude some important cases. For example, in the

model of Bikhchandani et al. (1992) individuals not only condition their choice on the

previous choices of others, but also on the order in which those choices were made; thus the

influence exerted by the second individual in the sequence on the third individual will be

different depending on whether or not the second individual made the same decision as the

first individual. No such conditioning is possible in our model, which is equivalent to saying

that an individuals observations of others are unordered.10 We do not believe, however, that

this simplifying assumption overly restricts the applicability of our model, as for most of the

situations in which we are interested (typically including large number of individuals), the

knowledge and computational capacity required to condition influence on some exogenously

defined ordering would seem to exceed even quite generous estimators of human rationality.

In what follows, we explain why, under this assumption, individuals’ behavioral rules (or

best responses) can be described by simple one-dimensional functions of an aggregate "social

signal". To formalize matters, let N = {1, ...n} be a finite but large set of individuals and
A = {0, 1} be the common set of actions. That is, every individual makes a binary decision
ai ∈ A (e.g. whether or not to adopt a certain behavior, purchase a product, participate in a

riot, contribute to a public good, etc.). For every i, let ba−i = (a1, ..., ai−1, ai+1, ...an) ∈ An−1

be the action profile representing the behavior of the remaining individuals in the population.

We define a function, Ri : A
n−1 → [0, 1] such that Ri(ba−i) is i0s probability of choosing

action 1, given ba−i. Notice that this function is contingent exclusively on the action profile
9This assumption is related to the phenomenon of pluralistic ignorance, studied in the field of social

psychology; that is, even when individuals’ decisions are influenced by others they may ignore that the

decisions of others are also subject to social influence.
10Other kinds of dependecies may be possible as well, and it may be possible to generalize our model to

include some of them. However, for the sake of simplicity, we ignore all such dependencies here.
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of others, therefore the order in which one samples is irrelevant and the actions of others

are considered as simultaneous decisions. We note that if the best response is deterministic

then Ri(ba−i) ∈ {0, 1}; otherwise Ri(ba−i) ∈ [0, 1].
The next result shows how Ri(ba−i) can be expressed in terms of a one-dimensional function.
Proposition 1 For every i ∈ N , given Ri(ba−i), there exists a vector of weights {wij}j∈N ,
such that wij ∈ R+, wii = 0 and

X
j∈N

wij ≡ ni, as well as a one-dimensional map ri :

[0, ni]→ [0, 1], denoted as the influence-response function hereafter, such that

Ri(ba−i) = ri(ki(ba−i))
where ki : An−1 → [0, ni], the social signal, is defined given the vector of weights {wij}j∈N\{i}
as follows:

ki(ba−i) = X
j∈N\{i}

ajwij.

As illustrated in Figure 1, to prove this proposition, we have to show that Ri can be expressed

as a composition of the functions ki and ri. Obviously, it is enough to prove that there exists

a vector of weights {wij}j∈N\{i} such that ki is an injective function (i.e., ki(ba−i) = ki(bb−i) if
and only if ba−i = bb−i), since this would then allow us to define ri as a function satisfying that
ri(ki(ba−i)) = Ri(ba−i). A constructive proof of the existence of these weights is presented in
the appendix.

Insert Figure 1 about here

Although, in principle, the weights could simply be considered as abstract parameters used

to construct a one-dimensional map, we concentrate here on situations where the weights

are actually interpretable and reflect the relevance (or importance) that each interaction

impinges on the decision under consideration. To be precise, wij represents the importance

that i attributes to j’s action. Hence, the influence structure determined by the weights can

be interpreted as a weighted social network where, Ni = {j ∈ N s.t. wij > 0} is the set of
individuals with whom i interacts (or whom he cares about). If wij ∈ {0, 1} for all i, j ∈ N ,

the social network is unweighted although directed. The network is undirected if in addition

wij = wji for all i, j ∈ N .11

In Section 4 we illustrate how stochastic influence-response functions might arise. Neverthe-

less, for concreteness, we focus here exclusively on the deterministic case. Notice that any

deterministic influence-response function ri(ki) is characterized by a finite number of thresh-

olds, as illustrated in Figure 2. Formally, given ri(ki), there exists k1i , k
2
i , ...k

M
i ∈ [0, ni] such

11Following the representation of a weighted graph, one could consider that some individuals have a

negative impact on your decision. One way of achieving this would be to allow for negative weights . For

simplicity, however, this extension is not included in this paper.

10



that for every m ∈ {1, ...M − 1}, either ri(ki) = 0 for all ki ∈ [kmi , km+1i ] or ri(ki) = 1 for

all ki ∈ [kmi , km+1i ].

Insert Figure 2 about here

One of the advantages of representing the influence-response function as a one-dimensional

map is that we can study its monotonicity. In other words, we can analyze the effects

of increasing what we refer as the social signal ki. For instance, as illustrated in Figure

3.a, if ri(ki) is increasing (positive externalities) then, given that it only takes the values

0 or 1, it can be characterized by an upward threshold kUi ∈ [0, ni] such that action 1 is
chosen if and only if kUi ≤ ki.12 Notice that, in the case of unweighted networks, positive

externalities simply imply that the higher the number of individuals choosing action 1 in

ones neighborhood, the higher the probability of choosing 1. And finally, in the extreme

case where the network is complete and unweighted, positive externalities simply mean

that the higher the overall number of adopters of action 1, the higher the probability of

adopting 1. As illustrated in Figure 3.b, if the influence-response function is decreasing

(negative externalities), it is characterized by a downward threshold kDi ∈ [0, ni] such that
action 1 is chosen if and only if ki < kDi .

13 14 Finally, a non-monotonic influence-response

function is typically characterized by multiple thresholds. For concreteness, in this paper

we focus on the case with two thresholds; an upward threshold kUi ∈ [0, ni] and a downward
threshold kDi ∈ [0, ni], such that 0 ≤ kUi < kDi ≤ ni, where action 1 is chosen if and only if

kUi ≤ ki < kDi . This case is illustrated in Figure 3.c.

Insert Figure 3 about here

We emphasize that there may be many real world examples leading to these different forms of

externalities. For example, if everybody expects nobody to applaud between the movements

of a quartet, hardly anybody will, which makes this situation akin to the upward threshold

influence-response function case. By contrast, when attending to a party, if you expect

everybody to bring drinks you may think of bringing food. This also represents a critical

12This situation corresponds with a version of positive externalities where, if we compare the probability

of choosing action 1 when a set of individuals, say S, are choosing 1, with the corresponding probability

when there is a larger set of individuals choosing 1 (say S0) which contains S (i.e. S ⊂ S0), then the latter

probability is higher or equal than the former one.
13Notice that we are assuming that the influence-response function ri(ki) evalutated at the threshold

always takes the value of its right lateral limit. For example, ri(kDi ) = limki→kDi+
ri(ki).

14This specification may also be interpreted as a general definition for negative externalities that coincides

with the standard one if the network is complete and unweighted. Specifically, if we compare the probability

of choosing action 1 when a set of individuals, say S, are choosing 1, with the corresponding probability

when there is a larger set of individuals choosing 1 (say S0) which contains S (i.e. S ⊂ S0), then the latter

probability is lower or equal than the former one.
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mass phenomenon but with the opposite effect, that is, where there is a tendency to anti-

coordinate or, in other words, to coordinate on different actions. Finally, upward-downward

influence-response functions are also possible. In fashion, for example, people are often

unwilling to purchase a product until some number of others have done so, but the same

product can be once more unappealing when it becomes too popular.

As discussed above, influence-response functions, in addition to exhibiting multiple func-

tional forms, can also arise in many circumstances and for different reasons. In the following

sections we propose two frameworks to account for what we refer to as explicit and implicit

externalities; that is, two fundamentally different origins for social influence that neverthe-

less can lead to very similar behavior. In order to formally explain the difference between

explicit and implicit externalities, we must pay careful attention to the micro-mechanical

details of the adoption process. To do so, we follow a mechanistic (or social utility) approach

and incorporate the costs and benefits of choosing one action or the other in the analysis.

Therefore the payoffs (or utilities) of individuals become part of the model. Although, this

may be unnecessary for obtaining predictions about the collective outcomes, one clear ad-

vantage of tracing incentives to primitives related with costs and benefits is that it enables

us to ask questions of whether or not we obtain efficient outcomes in equilibrium (in the

sense of maximizing the total benefit to society) or, if instead, there is some tension between

individual and collective incentives. Furthermore, the parameters of the models become

interpretable and policy implications are, in principle, understandable.

2.1 Explicit externalities

Explicit externalities arise when the utility assigned to an action depends explicitly on the

absolute or relative number of individuals choosing the action. For example, the benefits

of using a particular computer language depend on the size of the population using the

same language. In this example, there are at least two reasons for such effect. First, due

to compatibility issues, the more people adopting the product, the easier it becomes to

exchange information with them. Second, services and accessories are more readily and

cheaply available the larger the population of users, where this second effect also applies to

less obvious examples of network externalities such as choosing among brands of cars, digital

cameras, etc.

To formalize matters, assume that each individual i ∈ N is characterized by a utility func-

tion. Invoking the same argument used for the construction of the one-dimensional influence-

response function, the utility of an individual can be represented as a function of the social

signal ki. That is, every i ∈ N is characterized by a utility function ui : A×R+ → R+ such

that ui(ai, ki) ∈ R+, where ki =
X

j∈N\{i}
wijaj .
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Let 5ui(·, ki) represent the difference in utility between choosing action 1 or action 0 given
a particular value of ki. More precisely, 5ui(·, ki) = ui(1, ki) − ui(0, ki). Assuming that

individuals are utility maximizers, i will choose action 1 if 5ui(·, ki) ≥ 0, and action 0

otherwise, (where for simplicity we consider that if 5ui(·, ki) = 0, action 1 is chosen). If

5ui(·, ki) is increasing with respect to ki (ui satisfies increasing differences) then i is subject
to positive externalities, which in turn implies that her influence-response function is char-

acterized by an upward threshold. Similarly, if 5ui(·, ki) is decreasing with respect to ki (ui
satisfies decreasing differences) the externalities are negative, and thus, i’s influence-response

function is characterized by a downward threshold.15 Finally, influence-response functions

with multiple thresholds are only possible if the utilities have non-monotonic differences, i.e.

5ui(·, ki) is non-monotonic (or similarly, the externalities are non-monotonic). Note that,
two individuals with the same thresholds do no necessarily need to have the same utilities,

whereas obviously two individuals with the same utilities always have the same thresholds.

Furthermore, the population will typically be characterized by a distribution of thresholds

and, as shown later in the paper (Section 3), this information is sufficient to compute the

equilibrium, and even non-equilibrium, properties of the collective dynamics. In contrast,

if we want to evaluate the efficiency of the outcomes, information about utilities is also

needed.16

To summarize, one can determine the form of the externality simply by analyzing the

monotonicity with respect to the social signal of the difference in utilities of choosing ac-

tion 1 and action 0. We next illustrate how this analysis can be performed in two different

scenarios: technology adoption and public goods.

2.1.1 Technology adoption

Consider the model of technological adoption proposed by Katz and Shapiro (1985).17 Con-

sider two technologies a = 0 and a = 1, where the "intrinsic" utility of adopting technology

a for individual i is given by ba(i). Letting pa denote the price of purchasing technology a,

then the overall utility of individual i is equal to

ui(a, ki) = ba(i)− pa + νa(ki)

15Obviously, individuals might have degenerate thresholds that would imply the precence of a dominant

strategy.
16 Schelling (1973) has also emphasized this point.
17The objective of Katz and Shapiro (1985) is to model the strategic behavior of two firms producing

competing network goods by the endogenous decision of the price. In this example we consider their basic

framework but we address a different question; we consider the prices of each product as given and study

the form of the externality that arises.
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where νa(ki) represents the network effects for a ∈ {0, 1} and

ki =
X

j∈N\{i}
wijaj

is the social signal. Obviously, the standard assumptions in the context of technology adop-

tion are that ν1(ki) increases with respect to ki, whereas ν0(ki) decreases with respect to

ki; hence the difference in utility between choosing 1 or 0 is

Oui(·, ki) = b1(i)− p1 + ν1(ki)− b0(i) + p0 − ν0(ki)

from which it follows that

dOui(·, ki)
dki

=
dν1(ki)

dki
− dν0(ki)

dki
> 0.

As a consequence, the externalities are positive and thus individuals’ influence-response

functions are characterized by an upward threshold that depends on the parameters of the

model as well as the specific forms of the functions νa(ki), where a ∈ {0, 1}. Notice that
one can consider other markets (apart from technology) such as clothing or art where non-

monotonic externalities may arise. These examples would correspond to non-monotonic

functions ν1(ki) and ν0(ki). We note also that this model encompasses as a particular

case (when νa(ki) is a linear function of ki) the standard social interaction models where

individuals play a bilateral game with each neighbor. If the game is a coordination game the

externalities are positive whereas if the game is an anti-coordination game the externalities

are negative. Finally, we observe that if ν1(ki) and ν0(ki) are determined from primitive

assumptions of the economic and psychological decision process, our model would therefore

fit into the category of mechanistic models, whereas if these functions are determined as

simple heuristics of how the behavior of others affects ones utility, our model would follow

a social utility approach.

2.1.2 Public good games

Public good games represent another class of games from which influence-response functions

can be simply derived.18 Public goods appear in many different contexts such as health

insurance, public transportation, environmental issues, and innovation, among others. In

all these cases, each individual has to decide whether to invest (ai = 1) or not, (ai = 0) in

some public good where the cost of investing is ci > 0. Let Gi(ai,ba−i) be the production
function from the perspective of player i, meaning that Gi(ai,ba−i) determines the benefits
18A very similar example has been described in Peterhansl and Watts (2005). Also Bramoulle and Kranton

(2005) have recently studied a model of public good games in a social network framework.
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obtained by player i given his own action ai and the action taken by the remaining players,ba−i. For simplicity assume that the social network is unweighted; that is, wij ∈ {0, 1} for
all i, j ∈ N , and therefore ni denotes the size of i’s neighborhood. It is straightforward to

show that the production function can be expressed in terms of a function (also referred as

the production function for i) gi : [0, ni]→ R+ satisfying

Gi(ai, a−i) = gi(ki + ai)

where

ki =
X

j∈N\{i}
wijaj

is the number of individuals that have invested in i’s neighborhood.

Then, for any player i ∈ N , her utility or payoff is

ui(ai, ki) = gi(ki + ai)− ciai,

and player i will choose to invest if and only if

Oui(·, ki) = gi(ki + 1)− gi(ki)− ci ≥ 0.

It is always the case in public good games that an individual’s utility increases with the

number of contributions of others; that is, the production function is always increasing (i.e.

g0i(ki) ≥ 0). In this case, however, it is the monotonicity of g0i what determines the form of

the externality. Thus only if gi is convex (positive externalities) will the influence-response

function be an upward threshold function; and only if gi is concave (negative externalities)

will it be a downward threshold function. Finally, if gi is convex for low values of ki and

concave for high values of ki (i.e. a sigmoid function) the influence-response function will

exhibit two thresholds, an upward and a downward threshold.19

Knowing the shape of the production function, which in principle can depend on the par-

ticular context, is therefore relevant since the predictions for the collective dynamics will

critically depend on this feature. In many examples of public goods proposed in the literature

the production function is concave, corresponding to the classical free-riding phenomenon in

which incentives to contribute decrease with the number of contributors. There is also rele-

vant work, however, that deals with non-concave production functions. For example, Winter

(2005) studies a situation where individuals have the option of reducing the probabilities of

failure of a joint project by investing towards their decisions. In such a scenario, the pro-

duction function is convex and thus the incentives to contribute increase with the number of
19Notice that one of the two, or both, thresholds might be a degenerate threshold which would imply

that a non-monotonic production function may lead to an upward threshold, a downward threshold, or no

threshold at all (i.e. where one action is always prefered to the other).
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contributors. Note that public good games constitute a class of games from which all three

forms of externalities may easily arise: positive, negative and non-monotonic. As a conse-

quence public good games which are superficially very similar (i.e. with slightly different

shaped production functions) can result in qualitatively distinct collective behavior. Con-

versely, applications which at face value seem quite different, such as technology adoption

and some kinds of public good games, can lead to similar qualitative aggregate outcomes.

In the next section we extend our framework to include implicit externalities, showing that

even "games" derived from entirely distinct origins, can be (in some circumstances) treated

in a unified way.

2.2 Implicit externalities

Implicit externalities arise indirectly as a result of inferences that individuals make about the

information regarding the decision that is held by others. Unlike explicitly externalities, we

assume that the utility of choosing one action is independent of the number of individuals

choosing the same action. Nevertheless, since individuals are uncertain about the utility

corresponding to each action, the information about the actions taken by other individuals

in the population is used to reduce this uncertainty and infer the optimal choice.

For example, the number of people in a restaurant may be taken as a signal of the qual-

ity of the food. Also, information regarding which books (or CDs) are best-sellers might

constitute an important influence on purchase decisions precisely because of this signaling

effect. Using the behavior of others as a screening device is enhanced when the market is

complex and sufficient knowledge is needed to make an optimal judgement, such as in the

case of unfamiliar products with multiple brands. Notice that we assume that individuals

are uncertain about the benefits corresponding to the purchase of the goods, which implies

that these are goods whose characteristics can only be well known after use.

There are many ways one can describe a model with uncertainty; here we take a very simple

but standard approach to the problem. For concreteness, assume that there are only two

states of the world relevant for the decision (e.g., high and low quality of a new technology)

and individuals are uncertain about which is the real state. An individual’s utility depends

on his action (adopt or not the new technology) and the state of the world. Formally, for all

i ∈ N , let A = {0, 1} be the set of possible actions where if ai = 0 agent i does not adopt
(e.g. does not purchase the product), and if ai = 1 agent i does adopt (e.g. purchases the

product). Let W = {w0, w1} be the possible states of the world. Then, ui : W × A → R+
is the utility function that maps both the action of individual i and the state of the world

to i’s utility.

Initially, we assume that all players are choosing action 0 and thus obtain a utility of
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ui(w0, 0) = ui(w1, 0) which is independent of the state of the world. However, if an in-

dividual decides to adopt, her utility would be ui(w1, 1) or ui(w0, 1) in state of the world

w1 and w0 respectively. We assume ui(w1, 1) ≥ ui(w0, 1) as well as a symmetry condition,

which implies that the difference between choosing the optimal and suboptimal action in

each state of the world is the same, i.e.,

ui(w0, 0)− ui(w0, 1) = ui(w1, 1)− ui(w1, 0). (1)

We also assume that individuals know their utilities conditional on the state of the world

but not which state pertains. Under these conditions, their best response is to choose the

action a∗i that maximizes their expected utilities, that is,

a∗i ∈ argmax
ai∈A

X
w∈W

Pi(w | ba−i)ui(w, ai)
where Pi(w | ba−i) is the updated belief that the state of the world is w, given the action
chosen by all other individuals in the population. Note that if each individual only observes

a subset of the population then Pi(w | ba−i) only depends on the components of ba−i, which
correspond to i’s neighbors.

The beliefs Pi(w | ba−i) can be generated in many different ways, each of which relies on a
different set of assumptions. For concreteness, we present here a simple updating rule to

illustrate how implicit externalities can also give rise to influence-response functions that

only depend on the number of individuals choosing each action. Let us assume that the

only possible transition is from 0 to 1 (i.e. once an individual adopts this is an irreversible

decision). Before making a decision, an individual receives a signal about the state of the

world s, which is either 1 or 0. If the state of the world is w0, the signal is 0 with probability

p > 1
2 ; whereas if the state of the world is w1, the signal is 1 with probability p. Therefore,

p measures the accuracy of the signal: the higher the value of p, the more informative the

signal becomes. Furthermore, p need not be the same across individuals; it can be obtained

from a distribution (with f(p) and F (p) as pdf and cdf respectively) where p is the average

accuracy. 20

Consider first the case where an individual, say i ∈ N , only observes her own signal before

making a decision. Assume also that, a priori each state of the world is equiprobable. That
20Note that our framing is very similar to Bickchandani et al. (1998), with the important exception that

we treat observations as independent (i.e. non sequential). Also Young (2005) and Jensen (1982) posit the

consequences for the shape of the adoption curve in a different context, where agents directly observe the

realized payoffs of the two competing technologies. Another related model is Bala and Goyal (1998). There

are several reasons why the model proposed by Bala and Goyal (1998) is significantly more complicated.

First, in their model, given a state of the world, the utility obtained from each action is randomly determined.

Second, individuals observe the utilities as well as the choices of neighbors. Third, and more importantly,

individuals use past experience both of their own and their neighbors to decide what to choose in each

period.
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is, Pr(w1) = Pr(w0) = 1
2 . Then if she receives a signal 1, using Bayes rule, her beliefs about

the state of the world are updated as follows

Pr(w1 | si = 1) =
Pr(si = 1 | w1) Pr(w1)

Pr(si = 1 | w1) Pr(w1) + Pr(si = 1 | w0) Pr(w0)

where Pr(w1 | si = 1) is the probability assigned to state w1, after receiving a signal of 1

and Pr(si = 1 | wr) is the probability of receiving a signal 1, given that the state of the

world is wr, where r ∈ {0, 1}.
Note that

Pr(w1 | si = 1) =
pi(1/2)

pi(1/2) + (1− pi)(1/2)
= pi.

By symmetry, we can show that

Pr(w0 | si = 0) =
pi(1/2)

pi(1/2) + (1− pi)(1/2)
= pi

where Pr(w0 | si = 0) is the probability assigned to state w0, after receiving a signal of 0.

If si = 1, choosing 1 has a higher expected utility than choosing 0. Specifically

piui(w1, 1) + (1− pi)ui(w0, 1) > piui(w1, 0) + (1− pi)ui(w0, 0)

or

pi(ui(w1, 1)− ui(w1, 0)) > (1− pi)(ui(w0, 1)− ui(w0, 0))

since pi > 1
2 and condition (3) holds.

Analogously, if si = 0 then action 0 is optimal since

piui(w0, 0) + (1− pi)ui(w1, 0) > piui(w0, 1) + (1− pi)ui(w1, 1).

Consider now a more general situation. Assume that in addition to receiving a private

signal, individual i observes the action taken by ni other individuals before making his

decision. More specifically, assume that ki of them are choosing 1 and ni − ki are choosing

0. Under these circumstances, she must (i) try to infer from their actions their signals;

and (ii) update his beliefs given his signal and the inferred signals of others. To address

part (i) we assume that an individual thinks that other individuals make their decisions

independently of each other, therefore, they only look at their own signal. This simplifying

assumption is a consequence of the independent effect assumption considered throughout

the paper and implies, in effect, that the actions of others reveal their signals in a trivial way

(i.e., action 1 if signal 1 and action 0 if signal 0). This behavior is consistent with the idea of

pluralistic ignorance from social-psychology (C. Bicchieri and Y. Fukui, 1999): people pay

attention to others, but do not think that others are also paying attention to others.
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For part (ii), we consider that an individual applies Bayes rule to update her beliefs after

observing her own signal and all other signals.21 Since she does not know the signal’s

accuracy of others, we assume that she takes as an approximation the average p; however,

she does know the accuracy of her own signal pi. Therefore, if si = 1

Pr(w1 | (ki, ni − ki)) =
Pr((ki, ni − ki) | w1) Pr(w1)

Pr((ki, ni − ki) | w1) Pr(w1) + Pr((ki, ni − ki) | w0) Pr(w0)
(2)

where Pr(w1 | (ki, ni − ki)) is the probability assigned to state w1, given that ki neighbors

are choosing action 1 and ni − ki are choosing action 0.

Equation (2) can also be written as

Pr(w1 | (ki, ni − ki)) =
pki(1− p)ni−kipi

pki(1− p)ni−kipi + (1− p)ki(p)ni−ki(1− pi)
.

Given that the utilities are symmetric, action 1 is preferred to action 0 if and only if Pr(w1 |
(ki, ni − ki)) >

1
2 . Then action 1 is chosen (after receiving a signal of 1) if and only if

1 + (
p

1− p
)ni−2ki(

1− pi
pi

) < 2

or equivalently

(
p

1− p
)ni−2ki <

pi
1− pi

which implies
ni
2
− 1
2

ln(pi/(1− pi))

ln(p/(1− p))
≤ ki.

Assuming now that si = 0, then

Pr(w1 | (ki, ni − ki)) =
pki(1− p)ni−ki(1− pi)

pki(1− p)ni−ki(1− pi) + (1− p)ki(p)ni−kipi
;

thus, action 1 is chosen if and only if

ni
2
+
1

2

ln(pi/(1− pi))

ln(p/(1− p))
≤ ki.

Note that, if the signal’s accuracy is equal to the average p, the thresholds are ni−1
2 and

ni+1
2 after a signal of 1 and 0 respectively. A consequence of this observation, illustrated in

Figure 5, is that if pi > p, the two thresholds spread out; whereas if pi < p, the thresholds

become closer.

Insert Figure 5 about here

21Applying Bayes rule and pluralistic ignorance at the same time might seem like a logical contradiction.

Really, however, we are assuming bounded rationality, and Bayes rule is just a well defined way of saying

that people do, in fact, make inferences from behavior of others. As we will show, Bayes rule leads to simple

heuristics that seem plausible, thus ultimately it is irrelevant whether individuals actually apply Bayes rule

or use some other procedure (Gigerenzer, Todd and Group, 1999).
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To conclude, the influence-response function that arises from our simple inference procedure

is:

r(ki) =

⎧⎨⎩ 1 if kUi ≤ ki

0 otherwise

where

kUi =

⎧⎨⎩ ni
2 −

1
2
ln(pi/(1−pi))
ln(p/(1−p)) if si = 1

ni
2 +

1
2
ln(pi/(1−pi))
ln(p/(1−p)) if si = 0

There is, of course, nothing unique about this procedure, and one could propose other,

equally valid procedures for deriving social influence from the observation of other people’s

actions. Furthermore, while only upward thresholds arise in this model, one could also think

of ways to generalize it to account for other forms of externalities (e.g. assuming that in-

dividuals have opposite preferences, and that this is common knowledge). The important

point is that although implicit externalities are based on a different set of assumptions than

explicit externalities, the consequence for the functional form of the decision rule can be

qualitatively indistinguishable. For example, if we compare the model of implicit exter-

nalities proposed here with the example of public goods with a convex production function

introduced in Section 2.1.3, we find that the behavior of individuals in both scenarios is char-

acterized by an upward threshold which will ultimately give rise to very similar qualitative

collective outcomes.

To conclude with the first part of the paper, we reiterate that our aims are two-fold: (1)

To provide a unified framework for studying social influence, and show how a wide range

of micro-mechanisms can be characterized by simple influence-response functions. (2) To

study how individual response functions aggregate and produce collective dynamics. Up to

this point, we have focused on the first question; in what follows we address the second.

3 Collective dynamics

Although useful for the purposes of deriving influence-response functions, in reality our

distinction between explicit and implicit externalities is somewhat artificial, for two reasons.

First, many real decision making situations may very well embody both kinds of externalities,

which in practice may be difficult or even impossible to disentangle. For example, when an

individual is observed to change her behavior to conform to some group norm, did she

do so because (a) she privately disagrees with the norm, but wants to avoid sanctioning

from other group members; (b) the benefits of group coordination are so great that the

precise norms on which they are coordinated are irrelevant; (c) her beliefs have shifted

unconsciously through repeated exposure to group beliefs; or (d) she has made a conscious
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decision to alter her beliefs on the assumption that “everyone else can’t be wrong”? In

this hypothetical scenario, the first two explanations represent explicit externalities, and the

latter two represent implicit externalities, where in each case the underlying psychology and

cost-benefit analysis (if there is one) may be quite different. In truth, however, probably all

these effects are in play simultaneously, and thus it may be ultimately unhelpful to draw

distinctions between them.

A second potential problem with separating explicit and implicit externalities is that in

many strategic situations, even in relatively simple two-player games, the players may have

considerable uncertainty regarding the strategies being employed by their opponents, or

even the game they are playing. Thus in order to optimize their expected utilities over time,

players must engage in what is called “strategic learning” (Young, 2004), which involves

both explicit and implicit externalities. As with the scenario above, it may be impossible

in practice to determine how much of the social influence players feel can be attributed to

learning from others, and how much is inherent to the structure of the underlying game

itself.

In both these scenarios, however, it may still be possible to elicit an individual’s influence-

response function empirically, either from data or controlled experiments. We are not aware

of any explicit attempts to map influence-response functions; however the seminal experi-

ments of S. E. Asch (1953) and the variations that followed (R.Bond and P.B. Smith, 1996)

suggest that such an exercise is possible, at least under some circumstances. Recent work by

J. Leskovec et al. (2005) also suggests that influence-response functions can be reconstructed

from empirical data, derived from online recommender networks.

Assuming that influence-response functions can be constructed in the absence of an unam-

biguous theoretical framework, we now show that regardless of their origin, it is precisely

the functional form of the influence-response function that critically determines the aggre-

gate behavior. This step represents an important advantage of our approach which in effect

allows us to compute the equilibria, given only the influence-response functions (i.e. without

knowing how they were obtained in the first place).

For tractability reasons, to describe the collective outcomes, we will assume global and

anonymous interactions in the population. Specifically, this implies that wij = w for all

i, j ∈ N , where for simplicity we normalize w = 1. Although, these assumptions are crucial

for our results to hold it is clear that, in reality, individuals have only limited information

about the behavior of others and it is precisely the intricate structure of the social network

what leads to a great amount of unpredictability in the collective outcomes (Watts, 2002).

The study of the collective dynamics accomplished here, however, helps us understand the

phenomenon of social influence in its simplest form and constitutes a starting point that we
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believe will be useful for guiding further research.

As an approximation, useful for deriving the collective outcomes, consider a continuous

population of individuals. We therefore redefine the influence-response function (ri : [0, 1]→
[0, 1]) as a function that maps the fraction of individuals choosing action 1 in the population

I, with the probability of choosing action 1, ri(I). Although in all the examples described in

the first part of the paper the population is finite, the results obtained with this continuous

approximation provides predictions that are appropriate to explain the qualitative collective

outcomes of a finite but large population. In what follows, we embed the model in a dynamic

framework of strategy revision, and analyze how individual-level decision processes aggregate

and produce collective outcomes.

3.1 Discrete dynamics (synchronized revisions)

The approach followed in this section is closely related to work of Granovetter (1978, 1986

and 1983) in which he analyzes how aggregate outcomes depend on the distribution of

preferences in the population (i.e. thresholds). Our approach, however, is conceivable more

general in connecting primitive assumptions about the behavior of individuals to different

equilibrium outcomes as well as providing a systematic and formal overview of the problem

of social influence. In addition, later in the paper, we depart from Granovetter’s approach

by considering asynchronous updating dynamics as well as stochastic best responses.22

Consider the following simple dynamics. In each period, all individuals synchronously revise

their strategy and choose a myopic-best response. That is, an individual chooses the action

that maximizes his utility (or expected utility), given the action of all other individuals in the

previous period. This dynamics is consistent with a bounded rationality view of the world

in that agents choose a best response to the strategy profile of the previous state, without

anticipating that all other agents will also revise (and probably change) their strategy next

period. Based on this assumption, we can describe how the fraction of individuals choosing

action 1, denoted by I(t) hereafter, evolves over time as follows:

I(t+ 1) = H(I(t)) (3)

where H : [0, 1]→ [0, 1] only depends on the influence-response functions of the individuals

in the population as described shortly.

22Michael Chwe (1999) also presents an extension of Granovetter’s work where, in contrast with our

approach, completely rational individuals use the information about the thresholds of their closest neighbors

to infer their behavior (although individuals care about the behavior of the whole population). The main

result (obtained through simulations of small networks) is that network position is much more important in

influencing people with low thresholds than people with high thresholds.
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Let rq(I) denote the influence-response function of individuals with a unique threshold

q ∈ [0, 1] in the positive and negative externality case, and a vector of two thresholds q =
(qu, qd) ∈ [0, 1]× [0, 1] in the non-monotonic externality case. Assume that q is distributed
in the population according to the pdf f(q) and let Iq(t) be the the fraction of individuals

choosing action 1 at time t with a threshold in the interval [q, q + δ] (where δ ∼ 0 in the
case of positive and negative externalities, and δ = (δ1, δ2) ∼ (0, 0) in the non-monotonic
externality case). Also let I(t) be the overall fraction of individuals choosing action 1 at

time t. For every value of q, we can approximate the dynamics by23

Iq(t+ 1) = rq(I(t))

where

I(t) =

1Z
0

f(q)Iq(t)dq

Therefore, we obtain that

I(t+ 1) = r(I(t)) (4)

where we define

r(I(t)) =

1Z
0

f(q)rq(I(t))dq

as the average influence-response function. Then, following the notation introduced above,

r(I(t)) = H(I(t)).

Consider the following cases:

(a) Positive externalities: Each individual’s influence-response function is characterized

by an upward threshold qui , where i ∈ N , which is distributed in the population with f(qu)

and F (qu) as pdf and cdf respectively. Notice that F (qu) is the fraction of individuals with

thresholds lower or equal to qu. It is straightforward to show that

r(I(t)) =

1Z
0

f(qu)rqu(I(t))dq
u =

I(t)Z
0

f(qu)dqu = F (I(t))

Hence, the fixed points of F (qu) correspond with the stationary states of the dynamics.

Furthermore, the shape of F (qu) determines the stability of the fixed points in interesting

ways. Consider first the case where the population is homogenous and therefore all indi-

viduals have the same threshold, say Iu. Then r(I) is a step function, characterized by an

upward threshold Iu. As illustrated in Figure 5.a, the stationary states of the dynamics are

I1 = 1 and I0 = 0. These states correspond to the states where all individuals are choosing

the same action, i.e. a0 = (0, 0, ...0) and a1 = (1, 1, ..., 1); the basin of attraction of each

23Obviously, this equation is an exact representation of the dynamics if δ → 0.
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stationary state is given by Iu. In other words, if the initial fraction of individuals choosing

action 1 is below Iu, the dynamics in the next period reaches I0 which is a sable state;

otherwise, it reaches I1, which is also stable.

An example with positive externalities where these results apply is in the context of the pro-

vision of a public good with a convex production function. In equilibrium either everybody

contributes to the public good or nobody does. Notice that the (efficient) equilibrium where

all individuals contribute is selected only if, on account to exogenous actions not explained

in our model, a fraction larger than Iu of individuals contribute in the initial state (for

example because they are induced to do so). Obviously, the likelihood of such an event is

related to the value of Iu, which in turn depends on the parameters of the micro-mechanical

details of the process such as benefits and costs of contributing.

Consider now as a more general case where the upward thresholds follow a symmetric beta

distribution (i.e., B(µ, µ)) with cdf Fµ(qu), where µ > 0. It is worth noting that, if µ > 1

then the states I0 and I1, are stable, whereas if µ < 1 (bimodal distribution), the unique

stable state is such that some individuals are choosing 1 and others are choosing 0. This

distinction might have important consequences for various phenomena; for example, assum-

ing that an infinitesimally small fraction of individuals initially chooses 1, would this action

spread to a larger fraction of the population or, would it vanish? The answer is that action

1 will spread if and only if

F 0µ(0) > 1

which corresponds with the condition µ < 1, as illustrated in Figure 5.

Insert Figure 5 about here

In other words, heterogeneity in the population allows for a cascades to occur: initially only

a small fraction of individuals adopt action 1 (those that clearly prefer 1 to 0); but due to

the positive-externality effects other individuals adopt 1 as well; and so on. In fact, small

differences in the distribution of thresholds might lead to radically different equilibrium

outcomes. For example, in the beta distribution of thresholds presented above, the cases

where µ is slightly above and below 1. These results also highlight the importance of knowing

the full distribution of thresholds instead of simply the average, since two distributions with

the same average threshold can have very different aggregate outcomes.24

Returning to the example of public goods with convex production functions, we find that,

unlike in the homogeneous case, heterogenous populations may be able to sustain contribu-

tion in equilibrium even in cases where only a small fraction of the population contributes

initially. Whether or not this result is possible, as well as whether or not the corresponding

24Granovetter (1978) emphasizes precisely this point.
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cascade causes everyone, or just a fraction to contribute depends critically on the specific

distribution of thresholds.

(b) Negative externalities: Each individual’s influence-response function is characterized

by a downward threshold qdi , for every i ∈ N , distributed in the population with f(qd) and

F (qd) as pdf and cdf respectively. In this case, it is straightforward to show that

r(I(t)) =

1Z
0

f(qd)rqd(I(t))dq
d =

1Z
I(t)

f(qd)dqd = 1− F (I(t))

Consider first the case where all individuals have the same threshold, say Id. Then, the

influence-response function r(I) is step function characterized by the downward threshold

Id. As illustrated in Figure 6.b, H(I) has no fixed points and the dynamics gets trapped in

a cycle that alternates between the states I0 and I1. For instance, if the initial condition is

below Id. In the next period all individuals choose action 1 (I1); then in the following period

all individuals simultaneously choose 0; and so on. Consider, for example, that individuals

have to decide whether to open or not a grocery store. Obviously, the higher the number

of already existing grocery stores, the lower the benefits derived from opening a new one.

Assuming an homogeneous population and the simultaneous updating dynamics described

above, we conclude that there is no stationary states but instead the dynamics cycles around

the two extreme cases; all individuals open a store or nobody does. This is clearly not a

good prediction of what occurs in reality. What seems to be driving the result is the extreme

assumption that all individuals simultaneously revise their strategy every period. If, on the

contrary (as studied in Section 3.2) only a few individuals update every period, the results

provide more reasonable predictions.

Assume now the more general case where the thresholds are distributed in the population

according to a continuous cdf F (qd). In such a case, given that r(0) = 1, r(1) = 0 and r(I)

is decreasing, there exist a unique stationary state of the dynamics I∗, where I0 < I∗ < I1,

the stability of which will depend on the slope of F (qd) evaluated at the stationary state I∗.

Specifically, if F 0(I∗) < −1 the dynamics behaves aperiodically, whereas if F 0(I∗) > −1, the
dynamics converges to I∗. Finally, if F 0(I∗) = −1, the dynamics cycles around the value I∗.
As an illustration see Figure 6. Note that, also in this case, the distribution of thresholds

has some qualitative impact on the results; however, unlike the positive externality case, the

long-run behavior of the dynamics does not depend on initial conditions.

As a consequence of this general result, public goods games with concave production func-

tions, therefore, never converge to a situation where all individuals contribute. This finding

contrasts with the result obtained for public goods with convex production functions; thus

highlighting our earlier point that superficially similar applications might lead to very dis-

tinct collective behavior.
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Insert Figure 6 about here

(c) Non-monotonic externalities: In this last case we assume that each individual’s

influence-response function is characterized by two thresholds, an upward threshold qui and

a downward threshold qdi , where q
u
i ≤ qdi . Let f(q

u, qd) be the joint density function. Then

r(I) =

1Z
0

1Z
0

f(qu, qd)r(qu,qd)(I(t))dq
udqd =

IZ
0

(

1Z
I

f(qu, qd)dqd)dqu

and therefore,

r(I) =

IZ
0

(

1Z
0

f(qu, qd)dqd −
IZ
0

f(qu, qd)dqd)dqu

or equivalently

r(I) =

IZ
0

fu(q
u)dqu −

IZ
0

(

IZ
0

f(qu, qd)dqd)dqu =

Fu(I)−
IZ
0

(

IZ
0

f(qu, qd)dqu)dqd

= Fu(I)−
IZ
0

(

IZ
0

f(qu, qd)dqu −
1Z
I

f(qu, qd)dqu)dqd

where fh(q
h) and Fh(q

h) for h ∈ {u, d}, represent the marginal density and cumulative
distribution functions, respectively of f(qu, qd).

Therefore,

r(I) = Fu(I)−
IZ
0

fd(q
d)dqd +

IZ
0

(

1Z
I

f(qu, qd)dqu)dqd.

Given that qu < qd, then
IZ
0

(

1Z
I

f(qu, qd)dqu)dqd = 0

and therefore

r(I) = Fu(I)− Fd(I).

In this case, the stable states depend critically on the shape of Fu(I) − Fd(I). A general

conclusion is that, as long as there is a positive fraction of individuals with a non-degenerate

downward threshold, I1 is never stationary. We focus first on the case where all individuals

have the same two thresholds Iu (an upward threshold) and Id (a downward threshold).25

In such a case and as illustrated in Figure 7.a, given any initial condition, the dynamics

25This is obviously just a particular example of a non-monotonic externality, however, in this paper we

focus on this case since most of the insights obtained here can easily be extended to the more general form.
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converges to the state where all individuals are choosing action 0 (I0). For example, if the

initial condition is either below Iu or above Id, all individuals have incentives to switch to

action 0 next period. If, by contrast, the initial condition is above Iu and below Id, it takes

two periods to reach the state I0; all individuals switch to action 1 in the first period, but then

switch to action 0 in the second period. To illustrate this case with an example, consider the

context of public goods with an s-shaped production function; then, independent of initial

conditions, the dynamics will rapidly converge to a situation where none of the individuals

in the population contribute. As with the case of negative externalities, this result is driven

by the synchronous nature of the updating; and more reasonable results prevail once this

assumption is violated (see Section 3.2).

Also, Figure 7.b and 7.c show that for a wide range of distribution functions there are

two stationary states, I0 and I∗, where 0 < I∗ < 1. The stability of I∗ depends on the

slope of Fu(I)−Fd(I) at I∗. This case constitutes a mixture between positive and negative

externalities: as in the positive externality case, the long run behavior of the dynamics may

depend on initial conditions; but like negative externalities, the dynamics might exhibit

aperiodic behavior.

As explained earlier, this type of non-monotonic externality seems common in the case of

fashionable products. In fact, as the results seem to point out, precisely in fashion one might

observe some sort of cyclic or chaotic phenomena, where styles that were popular in the past

are reinvented and become popular again. Apart from fashion, non-monotonic externalities

also may arise in the context of public good games with an s-shaped production function,

thus raising again the importance of knowing the shape of the production function to better

predict the collective outcomes.

Insert Figure 7 about here

3.2 Continuous Dynamics (asynchronized revisions)

In the previous section, we have considered a discrete dynamics where in every period all

individuals choose the action which is a best response to what the remaining individuals

did in the last period. In this section, however, we consider a dynamics where only a

small fraction of individuals revise every period. There are three main reasons why this

asynchronized version of the dynamics seems more appropriate for most contexts. First,

although in some situations, actors’ decisions will be forcibly synchronized, in general that

will not be the case, thus no synchronous mechanism exists. Second, although we have

focused on analyzing how individuals behave with respect to a simple binary decision, in

reality, individuals have to face multiple decisions each of which might reflect different aspects

of their lives (e.g. which car to buy, political party to vote, TV series to watch, etc.).
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Therefore, it is reasonable to assume that due to inertia as well as time constraints individuals

do not revise (and optimize) all decisions every period. Third, if we assume that only a small

fraction of individuals revise every period, the action profile does not vary significantly from

one period to another; thus, the action profile at a certain time is a good approximation

of the action profiles in the near future, which makes a myopic-best response a reasonable

behavioral assumption.

For tractability reasons, instead of analyzing a discrete dynamics incorporating this feature,

we study its continuous counterpart; that is, in every period t, individuals revise their

strategy at a rate λ > 0 and, as before, if an individual revises her action, she chooses a

myopic-best response. The dynamics describing the evolution over time of the fraction of

individuals choosing action 1 is therefore:

dI(t)

dt
= eH(I(t))

where eH : [0, 1] → [0, 1] depends on the influence-response functions of the individuals in

the population as we will show below.

To compute the stationary states of the dynamics we use standard mean-field theory. Specif-

ically we assume that the transitions from action 0 to action 1 and vice versa take place at

the average rate. We consider a population characterized by a distribution of thresholds,

noting that the homogeneous case simply corresponds to a particular instance of this more

general framework. Recall from the previous section that Iq(t) represents the fraction of

individuals choosing action 1 at time t with a threshold in the interval [q, q + δ] (where

again δ ∼ 0 in the case of positive and negative externalities and δ = (δ1, δ2) ∼ (0, 0) in the
non-monotonic externality case). Hence, the mean-field dynamical equation for each Iq(t)

can be be approximated by:

dIq(t)

dt
= −Iq(t)rateI(t),q(1→ 0) + (1− Iq(t))rateI(t),q(0→ 1) (5)

where rateI(t),q(1 → 0) = λ(1 − rq(I(t))) and rateI(t),q(0 → 1) = λrq(I(t)). Noting that

rq(I(t)) is the influence-response function of individuals with threshold q.26 Substituting

the expressions for the rates in equation (5), we find that

dIq(t)

dt
= λ(rq(I(t))− Iq(t)). (6)

As the overall fraction of agents choosing 1 in the population is

I(t) =

1Z
0

f(q)Iq(t)dq (7)

26Again, this is an exact approximation of the dynamics if δ → 0.
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then it follows that

dI(t)

dt
=

1Z
0

f(q)
dIq(t)

dt
dq. (8)

Now, replacing equation (6) in equation (8), we find that

dI(t)

dt
=

1Z
0

f(q)λ(rq(I(t))− Iq(t))dq

or equivalently,
dI(t)

dt
= λ(r(I(t))− I(t)) (9)

where, we define

r(I(t)) =

1Z
0

f(q)rq(I(t))dq

again as the average influence-response function. Thus, following the notation introduced

above, we obtain that eH(I(t)) = λ(r(I(t))− I(t)).

After imposing the stationary condition (dI(t)dt = 0), we find that

I = r(I) (10)

which coincides with the condition obtained in the discrete dynamics. In other words, the

stationary states of the discrete and continuous dynamics coincide. However, as we will

show next, the stability properties of the stationary states are typically different. Let us

again consider positive, negative and non-monotonous externalities separately.

(a) Positive externalities: The influence-response function of an individual is character-

ized by an upward threshold. These thresholds are distributed in the population according to

the pdf f(qu). Note that, as well as in the discrete dynamics case it can easily be shown that

r(I(t)) = F (I(t)) where F (qu) is the cdf of thresholds. Therefore the dynamical equation is

dI(t)

dt
= λ(F (I(t))− I(t)),

where again stationary states coincide with the fixed points of the threshold distribution

function. In addition, for positive externalities, not only the set of stationary states, but also

their stability properties coincide with those obtained in the discrete dynamics. The reason

why this holds is that in the positive externality case, the discrete dynamics only exhibited

equilibrium behavior (because F 0(I) ≥ 0 for all I ∈ [0, 1]). The rates of convergence to
the stable states, however, now depend on the updating rate λ. To illustrate, consider the

distribution of thresholds with cdf F (qu) represented in Figure 8. Then, as shown in Figure

9.a the dynamics converge to state I0 or state I1 depending on whether the initial fraction

of agents choosing action 1 is above or below the interior solution for F (I∗) = I∗.

Introduce Figures 8 and 9 about here
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(b) Negative externalities: The influence-response function of an individual is again

characterized by a downward threshold, where these thresholds are distributed according

to the pdf f(qd). As in the discrete case, r(I(t)) = 1 − F (I(t)), where F (qd) is the cdf of

thresholds, and the dynamical equation is

dI(t)

dt
= λ(1− F (I(t))− I(t)).

As illustrated in Figure 9.b, there exists a unique stationary state which is also stable,

where some individuals choose 1 and others choose 0. This result holds for all distribution

of thresholds and differs with the result obtained for the discrete dynamics. For example, in

the homogenous population case, the continuous dynamics converge to an interior state I∗

(i.e. 0 < I∗ < 1 ), whereas the discrete dynamics cycled from state I0 to state I1 and vice

versa.

(c) Non-monotonic externalities: As before, individuals are characterized by having two

thresholds, an upward threshold and a downward threshold qu and qd respectively, where

these thresholds can vary across individuals in the population. Assume f(qu, qd) is the

pdf of the distribution of thresholds in the population. Then, as already shown for the

discrete dynamics, the aggregate influence-response function r(I(t)) = Fu(I(t)) − Fd(I(t)),

where Fu(qu) and Fd(q
d) are the cdfs of the marginal distributions. Hence, the dynamical

equation is
dI(t)

dt
= λ(Fu(I(t))− Fd(I(t))− I(t))

where once again the resulting behavior will depend critically on the properties of the dis-

tribution function. It is straightforward to see that, for certain threshold distributions we

obtain the dynamics illustrated in Figure 9.c where there exist two stable states I∗0 and

I∗ such that 0 < I∗ < 1, again in contrast with the more complicated dynamics of the

synchronous case.

To conclude, the analysis of the continuous dynamics (as compared with the discrete ver-

sion) highlights the importance of the aggregation mechanisms as well as the distribution of

preferences. In particular, aggregate outcomes cannot be determined by a simple counting of

preferences (or the average preference) since this might generate wrong results. Furthermore,

when individuals are subject to social influence, one cannot infer individual dispositions from

long run collective behavior, but must also consider the intermediate states of the dynamics

that led to it.
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4 Extensions

4.1 Stochastic influence-response function

In the previous sections we have studied situations where the influence response is a deter-

ministic function of the social signal I, i.e. ri(I) ∈ {0, 1}, for every i ∈ N . Nevertheless,

one of the advantages of our approach is that we can generalize the model to account for

stochastic influence-response functions i.e. where for every i ∈ N , ri(I) ∈ [0, 1]. In order
to determine the collective outcomes for this generalization, one must simply substitute in

the dynamical equations obtained in Section 3 the deterministic influence-response functions

by their stochastic counterparts. There are many reasons why an individual may behave

stochastically (or appear to do so): (a) uncertainty about the social signal (b) errors in the

computation of the best-response (c) uncertainty about the game that is being played (d) un-

certainty about who the individual is going to play the game with. In all these hypothetical

scenarios, the influence-response function cannot be described as a deterministic function of

the social signal I. To clarify this point we formalize next two of the cases described above.

First, consider case (a) where individuals are uncertain about the value of I. Moreover, each

individual receives a random signal which is normally distributed with mean I and variance

σ. Therefore, the signal is denoted as eI and is distributed as N(I, σ). After receiving the
signal, individuals choose a (deterministic) myopic-best response. Consider, for example,

the case with positive externalities in which the influence-response function is characterized

by an upward threshold q; that is,

r(eI) =
⎧⎨⎩ 1 if eI ≥ q

0 if eI < q.
(11)

Given that eI is a random variable, we can rewrite equation (11) as follows:

r(I) = Pr(eI ≥ q) = Pr(N(I, σ) ≥ q)

which is stochastic.

Assume that not only the threshold q ∈ [0, 1], but also the variance σ ∈ [0, L] of the signal
(where L denotes the maximum variance) is distributed in the population with a density

function f(σ, q). Then, the average influence-response function necessary to obtain the

collective outcomes is simply:

r(I) =

MZ
0

(

1Z
0

Pr(N(I, σ) ≥ q)f(q, σ)dq)dσ.

31



An alternative way to motivate stochastic decisions would be to consider a situation where

individuals make errors when computing their best responses (case (b) mentioned above).

Assume, however, that the propensity to play an action is exponentially related to its util-

ity27 ; that is,

r(I) =
eβu(1,I)

eβu(1,I) + eβu(0,I)
,

where β > 0 measures the degree of randomness in the choice of i. In particular, if β →
+∞ this behavioral rule coincides with the standard (deterministic) myopic best-response;

whereas if β = 0 both actions are chosen with equal probability, independently of I. Also

note that u(a, I) is the utility function associated with choosing action a ∈ {0, 1} when a
fraction of I individuals are choosing action 1. Consider a heterogeneous population where

different individuals are characterized by different values of β. More specifically, let f(β)

be the pdf of the distribution of β’s in the population. The aggregate influence-response

function would correspond to

r(I) =

+∞Z
0

eβU(1,I)

eβU(1,I) + eβU(0,I)
f(β)dβ.

4.2 Irreversible dynamics

The dynamics studied in the body of the paper allows for transitions to go in both directions.

That is, an individual choosing action 1 might be willing to choose action 0 and vice versa.

There are some situations, however, where this reversibility in actions is not reasonable; for

example, in the implicit externality model presented in Section 2.2 only transitions from

action 0 to action 1 are possible. For concreteness, let us focus on the continuous dynamics

presented before in the paper. The dynamical equation of this variation of the model is

dIq(t)

dt
= (1− Iq(t))λrq(I(t))

which in turn implies that

dI(t)

dt
=

1Z
0

f(q)(1− Iq(t))λrq(I(t))dq,

where f(q) is the pdf of the distribution of thresholds in the population.

After imposing the stationary condition, dI(t)dt = 0, we obtain the equation

1Z
0

f(q)rq(I(t))dq =

1Z
0

f(q)Iq(t)rq(I(t))dq. (12)

27This stochastic best response rule was proposed by Young (1998).
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There are again three possible cases according to the form of the externality: (i) positive

externalities (ii) negative externalities (iii) non-monotonic externalities, where we consider

in detail only case (i). Note that equation (12) can be written as

IZ
0

f(q)dq =

IZ
0

f(q)Iqdq,

which holds if and only if

Iq = 1 for all q ≤ I. (13)

In what follows we show that state I is sustained in equilibrium if and only if F (I) ≤ I

where F (q) is the cdf of the distribution of thresholds in the population. First we shall prove

that if I is such that F (I) > I, then I cannot be an equilibrium state. To do so, consider eI
such that F (eI) > eI; then eIZ

0

f(q)dq =

1Z
0

f(q)eIqdq,
which in turn implies that there exists a value of eq ≤ eI, such that eIeq < 1. Notice, however,
that equation (13) is not satisfied and thus eI is not an equilibrium state.

To complete the proof, take eI such that F (eI) ≤ eI; we must now show that eI is then an
equilibrium state. To do so, we must find {eIq}q∈[0,1] such that eI = R f(q)eIqdq and such that
condition (13) holds. By assumption, we know that

eIZ
0

f(q)dq ≤ eI,
which allows us to construct eIq in a way that eIq = 1 for all q ≤ eI.
Following similar steps, we can prove that for case (ii) a fraction I of individuals choosing

action 1 is stationary if and only if 1− F (I) ≤ I.

5 Final remarks

The main goal of this paper was to understand how individual-level decision processes can

be classified as well as aggregated to produce collective outcomes. We have focused on

situations where individuals make simple binary decisions (adopt or not a certain action)

with externalities; that is, where the decision taken by an individual depends on the decision

taken by others. We have briefly reviewed a number of literatures in which the social,

psychological, and economic origins of this phenomenon have been explained, as well as a

wide variety of models of collective behavior in the presence of externalities. It is often the

case, however, that when theoretically grounded models are proposed, they are difficult to
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generalize; in particular it is unclear how one model relates to another. In this paper, we

attempt to overcome this problem by presenting a unified and reasonable general framework

to encompass externalities that may vary in origin (explicit or implicit externalities) and

form (positive, negative and non-monotonic externalities). We therefore treat in a similar

way a number of applications, which at face value seem quite different (e.g. public good

games and technology adoption, among others).

The condition of independent effects (or similarly pluralistic ignorance) allows us to describe

the behavior of individuals as simple influence-response functions: a one-dimensional (i.e.

scalar) function of the social signal. In the most general version of the model, the social signal

corresponds to a weighted sum of the number of individuals adopting the action, whereas in

the simplest scenario (where there is global and anonymous interactions) the social signal

is simply the overall fraction of adopters in the population. In this latter case, individuals

are characterized by thresholds that depend only on the total number of others making a

decision. In some applications (public goods with convex production functions, technology

adoption, etc.) individuals are characterized by upward thresholds (i.e. a certain fraction

of individuals must adopt before a given individual does so), while in others (e.g. public

goods with concave production functions) they are characterized by downward thresholds

(i.e. individuals adopts only if the fraction of individuals that have already adopted is below

their threshold). Finally, we have also studied more complex scenarios where individuals

are characterized by two thresholds (an upward and a downward threshold) to account for

applications such as public good games with s-shaped production functions.

To compute collective outcomes one needs to know the full distribution of thresholds in

the population as well as a dynamic model of how these individual preferences interact and

aggregate. Both ingredients are key to describe collective behavior and one cannot lead

to reasonable predictions without the other. In fact, given a dynamic model, populations

with similar average thresholds (or preferences) may generate very different results precisely

because of differences in their distribution of thresholds (e.g. a unimodal versus a bimodal

distribution of upward thresholds). Also, two different dynamic models (e.g. synchronous

versus asynchronous updating dynamics) can give rise to different outcomes even when

considering the same population (i.e. distribution of thresholds).

The main finding of this paper (obtained both with the synchronous and asynchronous

dynamics) is a qualitative one: on the one hand applications which superficially are very

similar, such as public goods games with slightly different shaped production functions, can

give rise to qualitatively distinct collective behavior; but on the other hand, very different

applications such as some kinds of public good games and certain kinds of social learning

problems might generate similar results. Another relevant aspect of our framework, however,

34



is more of a practical one: it allows for significant heterogeneity across individuals, where

heterogeneity is typically hard to incorporate in standard economic models, in our framework

heterogenous populations can be modelled just as easily as homogenous populations.

For simplicity, we have analyzed a situation with global and anonymous interactions among

the individuals in a population. We believe that the formal and systematic analysis of this

benchmark case (i.e., where we abstract from the network structure) is a worthwhile enter-

prise that helps us understand the phenomenon of social influence in its simplest form and

constitutes a starting point for further research. Given the interdisciplinary character of the

phenomenon of social influence or more generally contagion processes, there is a wide liter-

ature encompassing the fields of economics, sociology, statistical physics and epidemiology

trying to introduce networks into the analysis. For tractability reasons, the literature in

economics has concentrated on the study of structured networks (i.e. networks with some

recurrent pattern). Although some general results have been obtained (e.g. Morris, 2000

and Young, 1998, among others), these results are difficult to apply in practice. For instance

Morris (2000) characterizes the threshold for the degree of risk dominance of a certain action

in a coordination game, that guarantees its contagion in the population. This condition,

although extremely general would be difficult to compute unless the network has some re-

current pattern. As a natural complement to this approach there is also significant work

where, also for tractability reasons, the network is considered as random (see for example,

Watts, 2002; López-Pintado, 2005; Pastor-Satorrás and Vespignani, 2001, among others). A

disadvantage of most of these models (both the structured and random approach) is that,

although they have satisfactorily answered the question of whether the diffusion of a certain

behavior will take place or not, the extent (or size) of the diffusion is virtually ignored.28

A generalization of the network metaphor would allow not only for heterogenous actors, but

heterogenous classes of actors; for example, media figures, organizations and even institu-

tions, all of which could operate at a different level and interfere with the standard peer to

peer influence in intriguing ways. One could for instance assume that the initial fraction of

adopters in the population (an exogenous feature of our model) is actually related to mass

media advertisement efforts, which then determines critically whether the product spreads

or disappears. A more elaborated (and probably more realistic) model would be to consider

a hierarchical structure of social influence, where different layers in the hierarchy would

correspond to interactions of different entities (e.g. the bottom layer would be the standard

social influence, whereas the top layers would correspond to interactions across institutions).

To conclude, one clear advantage of linking the behavior of individuals with the benefits and

costs associated with each decision (as described in Section 2) is that it allows us to compare
28An exception is Watts (2002) which describes (through simulations) the distribution of possible cascade

sizes.
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the efficiency of different equilibrium outcomes. If for instance, the collective outcomes

predict multiple pareto-ranked equilibria, a plausible policy implication would be to alter

the incentives of a small subset of individuals (for example reducing their costs of adopting

the desired behavior) to trigger the system towards an efficient outcome (Peterhansl and

Watts, 2005).

6 Appendix

Proof of the Propostion 1: Consider the extreme case where Ri(ba−i) = R(ba0−i) if and only
if ba−i = ba0−i. Then, we must show that the vector of weights {wij}j∈N are such that alsoX

j∈N\{i}
wijaj =

X
j∈N\{i}

wija
0
j

if and only if ba−i = ba0−i. It is straightforward to see that this condition is analogous to
the condition that for all j ∈ N\{i}, wij cannot be written as a combination of sums and

minuses of {wik}k 6=j . Let us show that we can actually find a vector of weights satisfying
this property. Let w be an even number and wij = wj+1. For the sake of contradiction

assume that there exists j∗ ∈ N\{i} such that

wj∗+1 =
X
k∈N+

wk+1 −
X
h∈N−

wh+1 (14)

where N+ ⊂ N , N− ⊂ N and for simplicity of notation assume that we have already

simplified the equation so that N+ ∩N− = ∅. Then

wj∗+1 = wm+1(
X
k∈N+

wk−m −
X
h∈N−

wh−m)

where m = min{N+ ∪N−}. Assume that m ∈ N+
29 , then

wj∗+1 = wm+1(1 +
X

k∈N+\{m}
wk−m −

X
h∈N−

wh−m). (15)

By construction j∗ 6= m. Thus, if j∗ > m then

wj∗−m = (1 +
X

k∈N+\{m}
wk−m −

X
h∈N−

wh−m) (16)

Equation (16) leads to a contradiction since the left hand side is an even number whereas

the right hand side is an odd number.

Furthermore, if j∗ < m then

1 = wm−j∗(1 +
X

k∈N+\{m}
wk−m −

X
h∈N−

wh−m)

29A very similar argument would follow if instead m ∈ N−.
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which is also a contradiction since the left hand side of this equation is an odd number,

whereas the right hand side is even.30
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Figure 1: Representation of the function Ri as a composition of the functions ki and ri.
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Figure 2: An influence-response function ri(ki) with four thresholds.
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Figure 3: Different kinds of influence-response functions: (a) upward threshold influence-

response function (b) downward threshold influence-response function, and (c) upward-

downward threshold influence-response function.
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Figure 4: The upward threshold when the signal is either 1 (kiU (1)) or 0 (kiU (0)) and the

average accuracy is (a) above individual i’s accuracy pi < p or (b) below individual i’s

accuracy pi > p.
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Figure 5: I(t + 1) = F (I(t)) where F (I(t)) is the cdf of (a) a degenerated distribution of

thresholds at Iu (b) a symmetric Beta distribution of thresholds B(µ, µ) where µ > 1 (c) a

symmetric Beta distribution of thresholds B(µ, µ) where µ < 1.
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Figure 6: I(t+1) = F (I(t)) where F (qd) is the cdf of the distribution of downward thresholds

in the population. In figure (a) the distribution is degenerated at Id and therefore the

dynamics cycles between I0 and I1. In figure (b) the dynamics is cahotic because F 0(I∗) <

−1, where I∗ is the stationary state, i.e. F (I∗) = I∗. In figure (c) the dynamics converges

to I∗ because F 0(I∗) > −1.
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Figure 7: I(t+ 1) = Fu(I(t))− Fd(I(t)) where Fu(qu) and Fd(q
d) are the marginal distrib-

utions of the upward and downward threshold distributions in the population. In figure (a)

the distribution of thresholds is degenerated and thus all individuals in the population have

two thresholds Iu and Id. Figure (b) represents the case where there are two stationary

states I0 and I∗ such that 0 < I∗ < 1. The state I0 is stable whereas I∗ is unstable since

F 0u(0) − F 0d(0) < 1 and F 0u(I
∗) − F 0d(I

∗) < −1. Figure (b) represents the case where there
are two stationary states I0 and I∗ such that 0 < I∗ < 1. Both states are stable since

F 0u(0)− F 0d(0) < 1 and F 0u(I
∗)− F 0d(I

∗) > −1.
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Figure 8: Distribution of upward thresholds in the population F (qu).
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Figure 9: I 0(t) as a function of I(t). Figure (a) represents a situation where the thresholds

are upward thresholds and distributed in the population according to a cdf function with the

same qualitative features as F (qu) (see figure 10). Figure (b) represents a situation where

the thresholds are downward thresholds. Figure (c) represents a situation where individuals

have two thresholds, an upward and a downward threshold. In all figures the arrows indicate

the direction of the dynamics when I(t) lies in the corresponding regions.
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